→ Пошук по сайту       Увійти / Зареєструватися
Знання Вища математика Неопределенный интеграл

§ 33. Интегрирование иррациональных функций

  • 33.1. Квадратичные иррациональности
Рассмотрим некоторые типы интегралов, содержащих иррациональные функции.

Интегралы типа называют неопределенными интегралами от квадратичных иррациональностей. Их можно найти следующим обpaзoм: под радикалом выделить полный квадрат

и сделать подстановку х +b/2a=t. При этом первые два интеграла приводятся к табличным, а третий - к сумме двух табличных интегралов.

Пример 33.1. Найти интегралы

Решение: Так как,

то

Cдeлаем подстановку x+1/4=t, x=t-1/4,dx=dt. Тогда

 

Пример 33.2. Найти интеграл

Решение: Так как 6-2х-х2=-(х2+2х-6)=-((х+1)2-7)=7-(х+1)2, то подстановка имеет вид х+1=t, х=t-1, dx=dt. Тогда

Интегралы типа , где Рn(х) - многочлен степени n, можно вычислять, пользуясь формулой

где Qn-1(x) - многочлен степени n-1 с неопpедeлeнными коэффициентами, l - также неопределенный коэффициент.

 

Все неопределенные коэффициенты находятся из тождества, получаемого дифференцированием обеих частей равенства (33.1):

после чего необходимо приравнять коэффициенты при одинаковых степенях неизвестной х.

 

Пример 33.3.  Найти интеграл

Решение: По формуле (33.1) имеем:

Дифференцируя это равенство, получаем:

Сравниваем коэффициенты при одинаковых степенях х:

Отсюда А=-1/2,B=3/2,l=2. Следовательно,

  • 33.2. Дробно-линейная подстановка
Интегралы типа  где а, b, с, d - действительные числа, a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановки где К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, что и

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби  выражается через рациональную функцию от t.

 

Пример 33.4.  Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t6, х=t6-2, dx=6t5 dt, Следовательно,

 

Пример 33.5.  Указать подстановку для нахождения интегралов:

Решение: Для I1 подстановка х=t2, для I2 подстановка

  • 33.3. Тригонометрическая подстановка
Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а•sint для первого интеграла; х=а•tgt для второго интеграла; для третьего интеграла.

 

Пример 33.6.  Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

  • 33.4.   Интегралы типа
Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типа  Эти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

 

Пример 33.7.  Найти интеграл

Решение: Так как х2+2х-4=(х+1)2-5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Тогда

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

  • 33.5.  Интегрирование дифференциального бинома
Интегралы типа(называемые интегралами от дифференциального бинома),где а, b - действительные числа; m, n, р - рациональные числа, берутся, как показал Чебишев П.А., лишь в случае, когда хотя бы одно из чисел р, (m+1)/n  или (m+1)/n+р является целым.

Рационализация интеграла в этих случаях осуществляется следующими подстановками:

1) если р - целое число, то подстановка х=tk, где k - наименьшее общее кратное знаменателей дробей m и n;

2)  если   (m+1)/n - целое число, то подстановка где s —знаменатель дроби р;

3)  если (m+1)/n+р - целое число, то подстановкагде s - знаменатель дpоби р.

Во всех остальных случаях интегралы типане выражаются через известные элементарные функции,т. е. «не берутся».

 

Пример 33.8.  Найти интеграл

Решение: Так как

то    

Поэтому делаем подстановку

Таким образом,

загрузка...
Сторінки, близькі за змістом