→ Пошук по сайту       Увійти / Зареєструватися
Знання Вища математика Введение в анализ

§24. Дифференциал функции

24. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

24.1. Понятие дифференциала функции

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ'(х)•∆х и а•∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так кака второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ'(х)•∆х.                                             (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ'(х)dх,                                              (24.2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ'(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

<< Пример 24.1  

Найти дифференциал функции ƒ(х)=3x2-sin(l+2x).


Решение: По формуле dy=ƒ'(х) dx находим

dy=(3х2-sin(l+2x))'dx=(6х-2cos(l+2х))dx.


<< Пример 24.2

Найти дифференциал функции

Вычислить dy при х=0, dx=0,1.


Решение:

Подставив х=0 и dx=0.1, получим


24.2. Геометрический смысл дифференциала функции

Выясним геометрический смысл дифференциала.

Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ½ =∆х, |AM1|=∆у. Из прямоугольного треугольника МАВ имеем:

Но, согласно геометрическому смыслу производной, tga=ƒ'(х). Поэтому АВ=ƒ'(х)•∆х.

Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.

В этом и состоит геометрический смысл дифференциала.

24.3 Основные теоремы о дифференциалах

Основные теоремы о дифференциалах легко получить, используя связь дифференциала и производной функции (dy=f'(x)dx) и соответствующие теоремы о производных.

Например, так как производная функции у=с равна нулю, то дифференциал постоянной величины равен нулю: dy=с'dx=0•dx=0.

Теорема 24.1. Дифференциал суммы, произведения и частного двух дифференцируемых функций определяются следующими формулами:

Докажем, например, вторую формулу. По определению дифференциала имеем:

d(uv)=(uv)'dx=(uv'+vu')dx=vu'dx+uv'dx=udv+vdu

Теорема 24.2. Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.

Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать

у'х=у'u•u'x.

Умножив обе части этого равенства на dx, поучаем у'хdx=у'u•u'хdx. Но у'хdx=dy и u'хdx=du. Следовательно, последнее равенство можно переписать так:

dy=у'udu.

Сравнивая формулы dy=у'х•dx и dy=у'u•du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.

Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.

Формула dy=у'х•dx по внешнему виду совпадает с формулой dy=у'u•du, но между ними есть принципиальное отличие: в первой формуле х — независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.

С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.

Например: d(cosu)=(cosu)'udu=-sinudu

24.4. Таблица дифференциалов

24.5. Применение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство

∆у≈dy,                                              (24.3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

<< Пример 24.3

Найти приближенное значение приращения функции у=х3-2х+1 при х=2 и ∆х=0,001.


Решение: Применяем формулу (24.3): ∆у≈dy=(х3-2х+1)'•∆х=(3х2-2)•∆х.

Итак, ∆у» 0,01.

Посмотрим, какую погрешность допустили, вычислив дифференциал функции вместо ее приращения. Для этого найдем ∆у:

∆у=((х+∆х)3-2(х+∆х)+1)-(х3-2х+1)=х3+3х2•∆х+3х•(∆х)2+(∆х)3-2х-2•∆х+1-х3+2х-1=∆х(3х2+3х•∆х+(∆х)2-2);

Абсолютная погрешность приближения равна

|∆у-dy|=|0,010006-0,011=0,000006.

Подставляя в равенство (24.3) значения ∆у и dy, получим

ƒ(х+∆х)-ƒ(х)≈ƒ'(х)∆х

или

ƒ(х+∆х)≈ƒ(х)+ƒ'(х)•∆х.                            (24.4)

Формула (24.4) используется для вычислений приближенных значений функций.


<< Пример 24.4

Вычислить приближенно arctg(1,05).


Решение: Рассмотрим функцию ƒ(х)=arctgx. По формуле (24.4) имеем:

arctg(x+∆х)≈arctgx+(arctgx)'•∆х,

т. е.

Так как х+∆х=1,05, то при х=1 и ∆х=0,05 получаем:

Можно показать, что абсолютная погрешность формулы (24.4) не превышает величины М•(∆х)2, где М — наибольшее значение |ƒ"(х)| на сегменте [х;х+∆х].


<< Пример 24.5

Какой путь пройдет тело при свободном падении на Луне за 10,04 с от начала падения. Уравнение свободного падения тела

H=gлt2/2, gл=1,6 м/с2.


Какой путь пройдет тело при свободном падении на Луне за 10,04 с от начала падения. Уравнение свободного падения тела

H=gлt2/2, gл=1,6 м/с2.


Решение: Требуется  найти  H(10,04).   Воспользуемся  приближенной формулой (ΔH≈dH)

H(t+∆t)≈H(t)+H'(t)•∆t. При t=10 с и ∆t=dt=0,04 с, H'(t)=gлt, находим


Задача (для самостоятельного решения). Тело массой m=20 кг движется со скоростью ν=10,02 м/с. Вычислить приближенно кинетическую энергию тела

24.6. Дифференциалы высших порядков

Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х — независимая переменная. Тогда ее первый дифференциал dy=ƒ'(х)dx есть также функция х; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d2y или d2ƒ(х).

Итак, по определению d2y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х).

Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным:

d2y=d(dy)=d(f'(x)dx)=(ƒ'(х)dx)'•dx=f"(x)dx•dx=f"(x)(dx)2 т. е.

d2y=ƒ"(х)dх2.                                            (24.5)

Здесь dx2 обозначает (dx)2.

Аналогично определяется и находится дифференциал третьего порядка

d3y=d(d2y)=d(ƒ"(х)dx2)≈f'(x)(dx)3.

И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: dny=d(dn-ly)=f(n)(x)(dx)n.

Отсюда находим, что, В частности, при n=1,2,3

соответственно получаем:

 

т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

 

Отметим, что все приведенные выше формулы справедливы только, если х — независимая переменная. Если же функцию у=ƒ(х), где х — функция от кαкой-mo другой независимой переменной, то дифференциалы второго и выше порядков не обладают свойством инвариантности формы и вычисляются по другим формулам. Покажем это на примере дифференциала второго порядка.

Используя формулу дифференциала произведения (d(uv)=vdu+udv), получаем:

d2y=d(f'(x)dx)=d(ƒ'(х))dx+ƒ'(х)•d(dx)=ƒ"(х)dx•dx+ƒ'(х)•d2x, т. е.

d2y=ƒ"(х)dx2+ƒ'(х)•d2x.                               (24.6)

Сравнивая формулы (24.5) и (24.6), убеждаемся, что в случае сложной функции формула дифференциала второго порядка изменяется: появляется второе слагаемое ƒ'(х)•d2х.

Ясно, что если х — независимая переменная, то

d2x=d(dx)=d(l•dx)=dx•d(l)=dx•0=0

и формула (24.6) переходит в формулу (24.5).

<< Пример 24.6

Найти d2y, если у=е и х — независимая переменная.


Решение: Так как у'=3е, у"=9e, то по формуле (24.5) имеем d2y=9e3xdx2.

<< Пример 24.7

Найти d2y, если у=х2 и х=t3+1и t— независимая переменная.


Решение: Используем формулу (24.6): так как

у'=2х,    у"=2,    dx=3t2dt,    d2x=6tdt2,

то  d2y=2dx2+2x•6tdt2=2(3t2dt)2+2(t3+1)6tdt2=18t4dt2+12t4dt2+12tdt2=(30t4+12t)dt2

Другое решение: у=х2, х=t3+1. Следовательно, у=(t3+1)2. Тогда по формуле (24.5)

d2у=у¢¢ •dt2,

d2y=(30t4+12t)dt2.


загрузка...
Сторінки, близькі за змістом