§ 21. Дифференцирование неявных и параметрически заданных функций
ADO в Delphi AJAX Android C++ CakePHP CMS COM CSS Delphi Flash Flex HTML Internet Java JavaScript MySQL PHP RIA SCORM Silverlight SQL UML XML Бази даних Веб-розробка Генетичні алгоритми ГІС Гітара Дизайн Економіка Інтелектуальні СДН Колір Масаж Математика Медицина Музика Нечітка логіка ООП Патерни Подання знань Розкрутка сайту, SEO САПР Сесії в PHP Системне програмування Системний аналіз Тестологія Тестування ПЗ Фреймворки Штучний інтелект
|
§ 21. Дифференцирование неявных и параметрически заданных функций21. ДИФФЕРЕНЦИРОВАНИЕ НЕЯВНЫХ И ПАРАМЕТРИЧЕСКИ ЗАДАННЫХ ФУНКЦИЙ Если функция задана уравнением у=ƒ(х), разрешенным относительно у, то функция задана в явном виде (явная функция). Под неявным заданием функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно у. Всякую явно заданную функцию у=ƒ (х) можно записать как неявно заданную уравнением ƒ(х)-у=0, но не наоборот. Не всегда легко, а иногда и невозможно разрешить уравнение относительно у (например, у+2х+cosy-1=0 или 2у-х+у=0). Если неявная функция задана уравнением F(x; у)=0, то для нахождения производной от у по х нет необходимости разрешать уравнение относительно у: достаточно продифференцировать это уравнение по x, рассматривая при этом у как функцию х, и полученное затем уравнение разрешить относительно у'. Производная неявной функции выражается через аргумент х и функцию у. << Пример 21.1 Найти производную функции у, заданную уравнением х3+у3-3ху=0. Решение: Функция у задана неявно. Дифференцируем по х равенство х3+у3-3ху=0. Из полученного соотношения 3х2+3у2· у'-3(1· у+х· у')=0 следует, что у2у'-ху'=у-х2, т. е. у'=(у-х2)/(у2-х). 21.2. Функция, заданная параметрически Пусть зависимость между аргументом х и функцией у задана параметрически в виде двух уравнений
где t — вспомогательная переменная, называемая параметром. Найдем производную у'х, считая, что функции (21.1) имеют производные и что функция х=x(t) имеет обратную t=φ(х). По правилу дифференцирования обратной функции
Функцию у=ƒ(х), определяемую параметрическими уравнениями (21.1), можно рассматривать как сложную функцию у=y(t), где t=φ(х). По правилу дифференцирования сложной функции имеем: у'х=y't•t'x. С учетом равенства (21.2) получаем
Полученная формула позволяет находить производную у'х от функции заданной параметрически, не находя непосредственной зависимости у от х. << Пример 21.2 Пусть
Найти у'х. Решение: Имеем x't=3t2, y't=2t. Следовательно, у'х=2t/t2, т. е. ![]() В этом можно убедиться, найдя непосредственно зависимость у от х. Действительно,
загрузка...
|
Сторінки, близькі за змістом
|
Copyright © 2008—2019 Портал Знань.
При використанні матеріалів посилання, для інтернет-ресурсів — гіперпосилання, на Znannya.org обов'язкове.
Зв'язок
|
НТУУ "КПІ" Інженерія програмного забезпечення КПІ Лабораторія СЕТ |
|